当前位置: > 在三角形ABC中,角A=30°,b=12,三角形的面积是18,则(sinA+sinB+sinC)除以(a+b+c)等于多少?...
题目
在三角形ABC中,角A=30°,b=12,三角形的面积是18,则(sinA+sinB+sinC)除以(a+b+c)等于多少?

提问时间:2020-08-07

答案
假设ABC外接圆半径R,
有a=2RsinA b=2RsinB c=2RsinC
c=2S/(b*sinA)=6
a^2=b^2+c^2-2bc*cosA=180-72√3
a=6√(5-2√3)
(sinA+sinB+sinC)/(a+b+c)
=(sinA+sinB+sinC)/[2R(sinA+sinB+sinC)]
=1/(2R)
2R*sinA=a
(sinA+sinB+sinC)/(a+b+c)
=1/2R
=sinA/a
=1/[12√(5-2√3) ]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.