当前位置: > 证明:定义在R上的函数f(x),最小正周期为T.若f(x)图像关于x=a,(b,0)对称,则T-4(b-a)...
题目
证明:定义在R上的函数f(x),最小正周期为T.若f(x)图像关于x=a,(b,0)对称,则T-4(b-a)
证明:定义在R上的函数f(x),最小正周期为T.(1)若f(x)图像关于x=a,(b,0)对称,则T-4(b-a)
(2)若f(x)图像关于x=a,(b,0)对称,则T=2(b-a)

提问时间:2020-08-07

答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.