当前位置: > 如图,△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,求四边形AEFD的面积....
题目
如图,△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,求四边形AEFD的面积.

提问时间:2020-08-07

答案
如图,△ABC中,AB=3,AC=4,BC=5,
∴BC2=AB2+AC2
∴∠BAC=90°,
∵△ABD,△ACE都是等边三角形,
∴∠DAB=∠EAC=60°,
∴∠DAE=150°.
∵△ABD和△FBC都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC.
在△ABC与△DBF中,
BD=BA
∠DBF=∠ABC
BF=BC

∴△ABC≌△DBF(SAS),
∴AC=DF=AE=4,
同理可证△ABC≌△EFC,
∴AB=EF=AD=3,
∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).
∴∠FDA=180°-∠DAE=30°,
∴S▱AEFD=AD•(DF•sin30°)=3×(4×
1
2
)=6.
答四边形AEFD的面积是6.
根据题中的等式关系可推出两组对边分别相等,从而可判断四边形AEFD为平行四边形.由勾股定理的逆定理判定∠BAC=90°,则∠DAE=150°,故易求∠FDA=30°.所以由平行四边形的面积公式即可解答.

平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质;勾股定理的逆定理.

本题综合考查了勾股定理的逆定理,平行四边形的判定与性质,全等三角形的判定与性质以及等边三角形的性质.综合性比较强,难度较大.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.