当前位置: > X与Y为相互独立的随机变量,其密度分别为fx(x).fy(y),则它们之和Z=X+Y的概率密度为:fz(z)=?...
题目
X与Y为相互独立的随机变量,其密度分别为fx(x).fy(y),则它们之和Z=X+Y的概率密度为:fz(z)=?

提问时间:2020-08-07

答案
回答:
fz(z) = fx * fy =∫{-∞,∞}fx(z-y)fy(y)dy = ∫{-∞,∞}fx(x)fy(z-x)dx
其中,fx * fy表示fx(x)的fy(y)的卷积.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.