题目
已知函数f(x)=lnx,g(x)=1/2ax+b
(1)若f(x)与g(x)在x=1处相切,试求g(x)的表达式
(2)若h(x)=[m(x-1)/x+1]-f(x)在[1,正无穷)上是减函数,求实数m的取值范围
(1)若f(x)与g(x)在x=1处相切,试求g(x)的表达式
(2)若h(x)=[m(x-1)/x+1]-f(x)在[1,正无穷)上是减函数,求实数m的取值范围
提问时间:2020-08-07
答案
已知函数f(x)=lnx,g(x)=(1/2)ax+b;(1)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;
(2)若h(x)=[m(x-1)/(x+1)]-f(x)在[1,+∞)上是减函数,求实数m的取值范围.(1).f '(x)=1/x;f '(1)=1;g'(x)=(1/2)a,令g'(1)=(1/2)a=1,即得a=2;
又因为相切,切点处两函数的值相等,故得f(1)=ln1=0=g(1)=(1/2)a+b=1+b故b=-1,
于是得g(x)=x-1.
(2).h(x)=[m(x-1)/(x+1)]-lnx;
h'(x)=[m(x+1)-m(x-1)]/(x+1)²-1/x=2m/(x+1)²-1/x
=[2mx-(x+1)²]/[x(x+1)²]=[-x²+2(m-1)x-1]/[x(x+1)²]0,于是得-x²+2(m-1)x-10;故其判别式Δ=4(m-1)²-4=4[(m-1)²-1]=4(m²-2m)=4m(m-2)
(2)若h(x)=[m(x-1)/(x+1)]-f(x)在[1,+∞)上是减函数,求实数m的取值范围.(1).f '(x)=1/x;f '(1)=1;g'(x)=(1/2)a,令g'(1)=(1/2)a=1,即得a=2;
又因为相切,切点处两函数的值相等,故得f(1)=ln1=0=g(1)=(1/2)a+b=1+b故b=-1,
于是得g(x)=x-1.
(2).h(x)=[m(x-1)/(x+1)]-lnx;
h'(x)=[m(x+1)-m(x-1)]/(x+1)²-1/x=2m/(x+1)²-1/x
=[2mx-(x+1)²]/[x(x+1)²]=[-x²+2(m-1)x-1]/[x(x+1)²]0,于是得-x²+2(m-1)x-10;故其判别式Δ=4(m-1)²-4=4[(m-1)²-1]=4(m²-2m)=4m(m-2)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1飞轮质量为60Kg,直径0.5m,转速1000r/min,求在5s内使其停下,求制动力(闸瓦与飞轮摩擦系数0.4)
- 2北美南部(美国加利福尼亚州和墨西哥北部)热带沙漠气候形成的原因 希望按点作答,就是标出一二三四等数字
- 3谁有高一地理必修一试题
- 41.一列长310米的火车,用13米╱秒匀速穿过一条长600米的山洞需多长时间?
- 5有鸡兔共30只,兔脚比鸡脚多60只,问鸡有?
- 6判断题:1.兔的心脏左右两侧是完全被分开的吗?
- 7用图像法解方程组2x-y=3 x+3y=5
- 8已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是( ) A.95 B.45 C.14-65 D.14+65
- 9甲乙两人同时从AB两地相向而行,甲每分钟行75米,乙每分钟行85米,相遇时乙比甲多行300米,求AB两地距离?
- 10The days get s__ and the nights get l____ in autumn谢谢了,