题目
P是矩形ABCD所在平面外一点,PA⊥平面ABCD,E,F分别是AB,PD的中点,二面角P-CD-B为45°,证:AF‖平面PEC
并证明:平面 PEC⊥平面PCD
并证明:平面 PEC⊥平面PCD
提问时间:2020-08-07
答案
(1)取PC中点G
FG=1/2CD=1/2AB=AE,FG//CD//AE所以AFGE为平行四边形,所以AF//EG
EG在平面PEC上,所以AF//平面PEC
(2)PA垂直于ABCD面,所以二面角即使角PDA=45°而F是PD中点,在三角形PDA中,AF垂直于PD,所以EG垂直于PC,所以平面PEC垂直于平面PCD
FG=1/2CD=1/2AB=AE,FG//CD//AE所以AFGE为平行四边形,所以AF//EG
EG在平面PEC上,所以AF//平面PEC
(2)PA垂直于ABCD面,所以二面角即使角PDA=45°而F是PD中点,在三角形PDA中,AF垂直于PD,所以EG垂直于PC,所以平面PEC垂直于平面PCD
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1这就是你要的书吗?汉译英
- 2假如边长为a 等边三角形的内切圆半径是多少
- 3用is或are填空:Here ( ) some orange for you.
- 4( )1._____good boy he is!a.what b.how c.what a d.how a ( )2._____beautiful the flower is!a.how
- 5外语:a simple question
- 6他太累了,以至于很快就入睡了.用英语怎么说
- 71mol氯气和足量NaOH溶液反应转移的电子数是多少?用NA表示,并解释原因.
- 8一道关于氧化还原反应的化学题
- 9函数f(x)的定义域为D,若满足: ①f(x)在D内是单调函数; ②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[-b,-a],那么y=f(x)叫做对称函数. 现有f(x)=2−x-k是对称函
- 10the more the more句型 主句和从句用一般现在时 和主句用一般将来时从句用一般现