当前位置: > 四棱锥P-ABCD底面是矩形,PA垂直于ABCD,E.F分别是AB ,PD的中点又二面角P-CD-B为45度 求证:平面PEC垂直...
题目
四棱锥P-ABCD底面是矩形,PA垂直于ABCD,E.F分别是AB ,PD的中点又二面角P-CD-B为45度 求证:平面PEC垂直

提问时间:2020-08-07

答案
四棱锥P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P-CD-B为45°.(1)求证:AF‖平面PEC;(2)求证:平面PEC⊥平面PCD;(3)设AD=2,CD=2,求点A到平面PEC的距离.(1)证明:取PC的中点G,连结EG、FG.∵F是...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.