题目
如图,在Rt△ABC中,角ABC=90°,以AB为直径作圆O交AC与D,过D做圆O的切线DE交BC于E,求证:BE=CE
阿阿阿 明天就要交了阿涐,-
阿阿阿 明天就要交了阿涐,-
提问时间:2020-08-07
答案
证明:
联结BD,则由于AB是圆O的直径,∠BDA=90°,即BD⊥AC.
由于OB⊥BE,故EB是圆O的切线.
又因为ED是圆O的切线,故由切线长定理,EB=ED,E在线段BD的垂直平分线上.
设BC的中点为E',联结DE';那么由于DE'是Rt△BDC的中线,故E'D=E'B,E'也在BD的垂直平分线上.
但是BD的垂直平分线与BC只能有一个交点,因此E和E'重合.
因此BE=EC.
联结BD,则由于AB是圆O的直径,∠BDA=90°,即BD⊥AC.
由于OB⊥BE,故EB是圆O的切线.
又因为ED是圆O的切线,故由切线长定理,EB=ED,E在线段BD的垂直平分线上.
设BC的中点为E',联结DE';那么由于DE'是Rt△BDC的中线,故E'D=E'B,E'也在BD的垂直平分线上.
但是BD的垂直平分线与BC只能有一个交点,因此E和E'重合.
因此BE=EC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1油菜花的萼片 花瓣 雄蕊 雌蕊
- 2题目①太阳的一生要经历哪两次核聚变?——氢核聚变、氦核聚变
- 3飞蛾像没头苍蝇一样乱撞,是比喻句么?
- 4After lunch,he c_____his work
- 5达摩克利斯之剑的英文是什么?
- 61.?.11.123.15131 是什么?
- 71、下列说法正确的是( )
- 8某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则要亏本10%,这两台空调调价后的售价
- 9反比例函数的图像和性质问题
- 10已知向量a=(√3,1),b=(0,-2).若实数k与向量c满足a+2b=kc,则c可以是 过程过程!