当前位置: > △ABC周长是根号2+1,且sinA+sinB=根号2sinC...
题目
△ABC周长是根号2+1,且sinA+sinB=根号2sinC
若C=60°,试求△ABC的面积

提问时间:2020-08-07

答案
sinA+sinB=√2sinC,根据正弦定理
a/sinA=b/sinB=c/sinC,所以
sinA=asinC/c
sinB=bsinC/c
(a+b)sinC/c=√2sinC,即
a+b=c√2 又因为
a+b+c=√2+1
可求出c=1 则a+b=√2
所以(a+b)^2=2 根据余弦定理可得
c^2=a^2+b^2-2abcosC
1=a^2+b^2-ab=(a+b)^2-3ab
ab=1/3
面积=absinC/2=(1/3)*(√3/2)/2=√3/12
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.