当前位置: > 在三角形ABC中,角A、B、C的对边分别为a、b、c,已知向量m=(2b-c,a),向量n=(coaA,-cosC),且m⊥n...
题目
在三角形ABC中,角A、B、C的对边分别为a、b、c,已知向量m=(2b-c,a),向量n=(coaA,-cosC),且m⊥n
1,求角A的大小
2,若a=√3,△ABC的面积为3√3/4,试判断△ABC的形状,并说明理由

提问时间:2020-08-07

答案
1,因为m⊥n,所以m*n=(2b-c)cosA-acosC=0
由正弦定理得:a=2RsinA、b=2RsinB、c=2RsinC.
(2sinB-sinC)cosA-sinAcosC=0
2sinBcosA-(sinAcosC+cosAsinC)=0
2sinBcosA=sin(A+C)=sinB
cosA=1/2、A=π/3.
2,△ABC的面积=(1/2)bcsinA=(√3/4)bc=3√3/4,则bc=3.
a^2=3=bc=b^2+c^2-2bccosA=b^2+c^2-bc
b^2+c^2-2bc=(b-c)^2=0、b=c.
而由(1)知,A=π/3,所以△ABC为等边三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.