当前位置: > 证明:若f(x)是以l为周期的周期函数,则f(ax+b)(a,b为常数,且a>0)是以l/a为周期的周期函数...
题目
证明:若f(x)是以l为周期的周期函数,则f(ax+b)(a,b为常数,且a>0)是以l/a为周期的周期函数

提问时间:2020-08-07

答案
f(x)的周期为I,则根据定义有f(x+kI)=f(x),即:
若y=x+kI,则 f(y)=f(x);
而对于函数:g(x)=f(ax+b),
当y=x+k(I/a)时,ay+b=a[x+k(I/a)]+b=ax+b+kI
g(y)=f(ay+b)=f(ax+b+kI)
而根据f(x)的周期性质又有f(ax+b+kI)=f(ax+b)=g(x)
所以有:
当 y=x+k(I/a),有 g(y)=g(x)
即g(x+k(I/a))=g(x)
所以g(x)=f(ax+b)是以I/a为周期的周期函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.