当前位置: > 已知向量a=(5√3cosx,cosx),b=(sinx,2cosx),设函数f(x)=a*b+|b|^2...
题目
已知向量a=(5√3cosx,cosx),b=(sinx,2cosx),设函数f(x)=a*b+|b|^2
当π/12≤x≤π/3时,方程f(x)=a+7/2有两个不相等的实数根,求a的取值范围

提问时间:2020-08-07

答案
已知向量a=(5√3cosx,cosx),b=(sinx,2cosx),
则a*b=5√3sinxcosx+2(cosx)^2=(5√3/2)sin2x+cos2x+1
IbI^2=(sinx)^2+4(cosx)^2=1+3(cos2x)^2=(3/2)cos2x+5/2
所以f(x)=(5√3/2)sin2x+(5/2)cos2x+7/2
=5sin(2x+π/6)+7/2
当π/12≤x≤π/3时,π/3≤2x+π/6≤5π/6
f(x)=a+7/2=5sin(2x+π/6)+7/2
sin(2x+π/6)=a/5有两个不相等的实数根
则π/3≤2x+π/6≤π-π/3=2π/3,且2x+π/6≠π/2
即√3/2≤a/5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.