当前位置: > 三角形ABC中,内切圆I和边BC,CA,AB分别相切于点D,E,F.求角FDE与角A的关系,并说明理由!...
题目
三角形ABC中,内切圆I和边BC,CA,AB分别相切于点D,E,F.求角FDE与角A的关系,并说明理由!

提问时间:2020-08-07

答案
内切圆和边BC,CA,AB分别相切于点D,E,F,连接OE、OF,(O是圆心)
那么∠AFO=∠AEO=90°
因为∠FOE+∠A+∠AFO+∠AEO=360°
又因为圆心角是圆周角二倍,可以知道∠FOE=2∠FDE
所以2∠FDE+∠A+∠AFO+∠AEO=360°
而∠AFO=∠AEO=90°
所以 2∠FDE+∠A=180°也就是说∠FDE与∠A是互补的关系.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.