题目
高数极限问题,证明:若lim x→∞(1+1/x)^x=e 那么 lim x→∞(1-1/x)^x=e^-1
证明:
若lim x→∞(1+1/x)^x=e 那么 lim x→∞(1-1/x)^x=e^-1
证明:
若lim x→∞(1+1/x)^x=e 那么 lim x→∞(1-1/x)^x=e^-1
提问时间:2020-08-07
答案
因为
lim x→∞(1+1/x)^x=e
将X用-X代替,那么-X→∞,可得lim x→∞(1-1/x)^-x=e,则lim x→∞(1-1/x)^x=[lim x→∞(1-1/x)^-x]^-1=e^-1
即得证.
lim x→∞(1+1/x)^x=e
将X用-X代替,那么-X→∞,可得lim x→∞(1-1/x)^-x=e,则lim x→∞(1-1/x)^x=[lim x→∞(1-1/x)^-x]^-1=e^-1
即得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点