当前位置: > 无论X取何值,多项式(m-1)x^3+2mx^2+(m+1)x+p=px^2-qx+p.求(m+P)^p-q的值...
题目
无论X取何值,多项式(m-1)x^3+2mx^2+(m+1)x+p=px^2-qx+p.求(m+P)^p-q的值

提问时间:2020-08-07

答案
因为(m-1)x^3+2mx^2+(m+1)x+p=px^2-qx+p,
所以比较系数得m-1=0,2m=p,m+1=-q,
所以m=1,p=2,q=-2,
所以(m + P)^p - q =(1+2)^2-(-2)=9+2=11.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.