题目
证明:当x>0时,有不等式(1+x)ln(1+x)>arctanx.
提问时间:2020-08-07
答案
证明:令f(x)=(1+x)ln(1+x)-arctanx,x≥0,则f(0)=0,且在[0,+∞)上可导.因为f′(x)=ln(1+x)+1-11+x2=ln(1+x)+x21+x2,故当x>0时,f′(x)>0,从而,f(x)在[0,+∞)上严格单调递增,故当x>...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点