当前位置: > 已知椭圆中心在原点,离心率为2分之根号3,F为左焦点,A为右顶点,B为短轴一顶点,求cos角ABF....
题目
已知椭圆中心在原点,离心率为2分之根号3,F为左焦点,A为右顶点,B为短轴一顶点,求cos角ABF.

提问时间:2020-08-07

答案
x²/a²+y²/b²=1(a>b>0)
离心率为e=c/a=√3/2,c=√3/2a
∴b²=a²-c²=1/4a²
∴a=2b,c=√3b
左焦点F(-c,0),右顶点A(a,0)
不妨取上顶点B(0,b)
∴BF=a=2b,BA=√(a²+b²)=√5*b
AF=a+c=2b+√3b=(2+√3)b
cos∠ABF
=(BF²+BA²-AF²)/(2×BF×AB)
=[4b²+5a²-(2+√3)²b²]/(2×2b×√5b)
=(1-2√3)/(2√5)
=(√5-2√15)/10
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.