当前位置: > 在平面四边形ABCD中,BC=1,DC=2,四个内角A,B,C,D的度数之比为3:7:4:10,求AB的长....
题目
在平面四边形ABCD中,BC=1,DC=2,四个内角A,B,C,D的度数之比为3:7:4:10,求AB的长.

提问时间:2020-08-07

答案
先简要画一图 根据题目可以得出 角C=60° 角D=120°
连接BD,取DC中点E连接EB,
所以BC=CE=ED
又因为角C=60°.所以三角形CBE为正三角形 所以有角EBC=角BEC=60°
BE=DE所以角DBE=角BDE=1/2角BEC (外角等于不相邻两个内角和)
所以角DBE+角EBC=90°
所以 三角形DBC为直角三角形
所以BD=根号3
因为角ADC=120° 角BDC=30°
所以角ADB为90°
角A=75°
AB=根号3*sin75° 要计算要用特殊计算器
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.