题目
n个正整数a1,a2,…,an满足如下条件:1=a1<a2<…<an=2009;且a1,a2,…an中任意n-1个不同的数的
算术平均数都是正整数,求n的最大值
说清理由
算术平均数都是正整数,求n的最大值
说清理由
提问时间:2020-08-07
答案
解 设a1,a2,……an中去掉ai后剩下的n-1个数的
算术平均数为正整数bi(i=1,2,……n,即
bi= [(a1+a2+...+an)-ai]/(n-1)
于是,对于任意的1≤i<j≤n,都有bi-bj=(aj-ai)/(n-1)
从而,n-1∣(aj-ai)
由于b1-bn=(an-a1)/(n-1) =2008/(n-1) 是正整数,故n-1∣23×251
由于an-a1=(an-an-1)+(an-1-an-2)+……+(a2-a1)≥+(n-1)+(n-1)+……(n-1)=(n-1)2
∴(n-1)2≤2008,于是n≤45,结合n-1∣23×251,∴n≤9,
另一方面,令a1=8×0+1,a2=8×1+1,a3=8×2+1,……a8=8×7+1,a9=8×251+1,则这9个数满足题设要求,综上所述,n的最大值为9
保证此解无任何错误!
欢迎提问
算术平均数为正整数bi(i=1,2,……n,即
bi= [(a1+a2+...+an)-ai]/(n-1)
于是,对于任意的1≤i<j≤n,都有bi-bj=(aj-ai)/(n-1)
从而,n-1∣(aj-ai)
由于b1-bn=(an-a1)/(n-1) =2008/(n-1) 是正整数,故n-1∣23×251
由于an-a1=(an-an-1)+(an-1-an-2)+……+(a2-a1)≥+(n-1)+(n-1)+……(n-1)=(n-1)2
∴(n-1)2≤2008,于是n≤45,结合n-1∣23×251,∴n≤9,
另一方面,令a1=8×0+1,a2=8×1+1,a3=8×2+1,……a8=8×7+1,a9=8×251+1,则这9个数满足题设要求,综上所述,n的最大值为9
保证此解无任何错误!
欢迎提问
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1解二元一次方程组{x+y=16 4.8x/60+12y/60=1.88
- 2函数y=-x平方+x+1,x∈[0,2]则该函数的值域是
- 3英语翻译
- 4空集属于为什么是错的啊?
- 52002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直
- 6If I go ———— A.so does he B.so will he
- 7两个完全相同的长方体的长、宽、高分别为3、2、1,把它们叠放在一起组成一个新的长方体,在这些新长方体中,表面积可能为_.
- 8胞吞 胞吐的例子
- 91/6*5表示什么意思
- 10为什么定轴转动只有向心加速度?没有切向加速度?