题目
已知向量a=cos阿尔法,sin阿尔法,b=cos贝塔,sin贝塔,c=-1,0,求,向量b+c长
已知向量A=(cosα,sinα) ,向量B=(cosβ,sinβ),向量c=(-1,0),求,向量b+c长度的最大值;设α等于4分之π,且A垂直于B+C求cosβ
已知向量A=(cosα,sinα) ,向量B=(cosβ,sinβ),向量c=(-1,0),求,向量b+c长度的最大值;设α等于4分之π,且A垂直于B+C求cosβ
提问时间:2020-08-07
答案
已知向量a=(cosα,sinα) ,向量b=(cosβ,sinβ),向量c=(-1,0),求向量b+c长度的最大值;
设α=π/4,且a垂直于b+c,求cosβ
b+c=(cosβ-1,sinβ),故︱b+c︱=√[(cosβ-1)²+sin²β]=√(cos²β-2cosβ+1+sin²β)
=√(2-2cosβ)≦√4=2,即向量b+c长度的最大值为2.
当α=π/4时a=(√2/2,√2/2);
∵a⊥(b+c),∴a•(b+c)=(√2/2)(cosβ-1)+(√2/2)sinβ=(√2/2)(cosβ+sinβ)-√2/2=0
故cosβ+sinβ=cosβ+cos(π/2-β)=2cos(π/4)cos(β-π/4)=(√2)cos(β-π/4)=1
即有cos(π/4-β)=√2/2,故π/4-β=±π/4,∴β=0或π/2.
设α=π/4,且a垂直于b+c,求cosβ
b+c=(cosβ-1,sinβ),故︱b+c︱=√[(cosβ-1)²+sin²β]=√(cos²β-2cosβ+1+sin²β)
=√(2-2cosβ)≦√4=2,即向量b+c长度的最大值为2.
当α=π/4时a=(√2/2,√2/2);
∵a⊥(b+c),∴a•(b+c)=(√2/2)(cosβ-1)+(√2/2)sinβ=(√2/2)(cosβ+sinβ)-√2/2=0
故cosβ+sinβ=cosβ+cos(π/2-β)=2cos(π/4)cos(β-π/4)=(√2)cos(β-π/4)=1
即有cos(π/4-β)=√2/2,故π/4-β=±π/4,∴β=0或π/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1现有木炭粉和氧化铜的混合物5g,加强热使其充分反应后,得到固体3.9g,求参加反应的木炭粉的质量.
- 2在一平直公路上有汽车甲,它以10M/S的速度匀速行驶,
- 3和平与发展问题中,和平是核心,发展是前提条件,对吗?
- 41995个8的连乘积减去l995个7的连乘积,差的个位上的数字是_.
- 5为什么说“沿场强方向电势降低最快”
- 6He has always been a good neighbour . 翻译是他一直是一个好邻居 .为什么用has 用is行不行 有什么区别
- 7只许州官放火,不许百姓点灯.现在用来说明什么
- 8若三次根号x-2=2,16y²-81=0.求xy的值
- 9移动一根火柴,使等式9=3成立
- 10甲容器中有浓度为百分之二的盐180克,乙容器中有溶度为百分之九的的盐水若干克,从乙中取出240克盐水倒入甲