当前位置: > 斜率为1的直线经过抛物线y^2=4x的焦点,与抛物线相交于两点M、N求线段MN的长....
题目
斜率为1的直线经过抛物线y^2=4x的焦点,与抛物线相交于两点M、N求线段MN的长.

提问时间:2020-08-07

答案
直线的方程为y=x-1,与y^2=4x联立,得
x^2-6x+1=0,所以x1+x2=6,x1*x2=1,根据弦长公式l=√((1+k^2)((x1+x2)^2-4x1*x2)得,弦长MN为8.
或根据题意可得,p=2,tanθ=1,运用焦点弦长公式,l=2p/(sinθ^2)得,焦点弦长MN=8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.