当前位置: > 实数的连续性是如何证明的?...
题目
实数的连续性是如何证明的?
高数中函数的连续性是通过与实数轴比较得出的,但有理数集合是不连续的,为什么说实数就是连续的呢?

提问时间:2020-08-07

答案
若实数不连续,则存在a、b是相邻的两个实数,则(a+b)/2也为实数,但它介于a、b之间,所以a、b不相邻.故实数连续 回答者:hyl510 - 见习魔法师 二级 4-26 15:59这证明对吗?若有理数不连续,则存在a、b是相邻的两个有理数...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.