当前位置: > 已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(1,2)时...
题目
已知二次函数f(x)=ax2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(1,2)时
f(x)≤((x+1)/2)平方(1)求f(1)的值(2)证明a>0 c>0 (3)且当x∈[-1,1]时,函数g(x)=f(x)-mx(x∈R)是单调函数,求证m≤0或m≥1
连起来
每个知识点最好都有

提问时间:2020-08-07

答案
(1)答案为1(下面是解答,a2表示a的平方)
f(-1)=a-b+c=0得a+c=b两边平方得a2+2ac+c2=b2两边同时减4ac得b2-4ac=a2-2ac+c2(a-c)2≥0;
f(x)-x=ax^2+(b-1)x+c≥0,函数恒大于0由可得(b-1)2-4ac≤0拆开得2b-1≥b2-4ac,前面已证b2-4ac=(a-c)2≥0,所以2b-1≥b2-4ac≥0;x∈(1,2)时f(x)≤((x+1)/2)平方,将1代入得f(1)=a+b+c≤1,又a+c=b(前面已证),
所以2b≤1, 前面有2b-1≥0,两不等式可得b=1/2. 所以f(1)=a+b+c=2b=1.
(2)证明:(1)中已证2b-1≥b2-4ac≥0又b=1/2,所以0≥b2-4ac≥0,可知
b2-4ac=0,又a+c=b,得a=1/4,c=1/4.
(3)证明:f(x)=1/4x2+1/2x+1/4.g(x)在[-1,1]单调,及单调递增或者单调递减,也就是导函数恒大于0或者恒小于0. 对g(x)求导即g'(x)=f'(x)-mx'=1/2x+1/2-m在[-1,1]恒≥0或者恒≤0.
当恒≥0时:1/2x+1/2-m≥0,m≤1/2x+1/2,m小于1/2x+1/2的最小值,将-1代入得m≤0
当恒≤0时:1/2x+1/2-m≤0,m≥1/2x+1/2,m大于1/2x+1/2的最大值,将1代入得m≥1.
知识点:1、二次函数有2个解时,b2-4ac>0,1个解时,b2-4ac=0, 无解,也就是函数曲线与X轴不相交时,b2-4ac<0. 如题f(x)-x≥0就可知(b-1)2-4ac≤0; 2、函数的单调性,表示单调递增或者单调递减,在某一定义域内单调递增就表示这一定义域内导函数大于0, 递减就小于0, 如题(3)说函数g(x)在[-1,1]单调,就把g(x)对x求导,倒数是一个1次函数,这个1次函数在[-1,1]内不能既有正的也有负的,这样就不是单调了.
我试着写详细了些,希望你能把这道题弄懂,
第一次这么辛苦的打字,鼓励鼓励我吧,哈哈!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.