当前位置: > 求函数奇偶性...
题目
求函数奇偶性
定义在r上的函数f x 对任意的x y∈R都有f(x+y)=f(x)+f(y)+1成立
求证:已知F(x)=f(x)+1,求证:F(x)为奇函数

提问时间:2020-08-07

答案
令y=0
f(x)=f(x)+f(0)+1
所以f(0)=-1
令y=-x
则f(0)=f(x)+f(-x)+1
所以f(x)+f(-x)=-2
所以F(x)+F(-x)
=f(x)+1+f(-x)+1
=[f(x)+f(-x)]+2
=-2+2
=0
所以 F(-x)=-F(x)
所以F(x)是奇函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.