题目
已知等差数列{an}的首项a1=1,公差d>0,且第二项,第五项,第十四项分别是一个等比数列的第二项,第三项
提问时间:2020-08-07
答案
(1)由题意得(a1+d)(a1+13d)=(a1+4d)2,……………………… 2 分
整理得2a1d=d2.
∵a1=1,解得(d=0舍),d=2. ………………………………………… 4 分
∴an=2n-1(n∈N*). …………………………………………………… 6 分
(2)bn= = = ( - ),
∴Sn=b1+b2+…+bn= 〔(1- )+( - )+…+( - )〕
= (1- )= . …………………………………… 10 分
假设存在整数t满足Sn> 总成立.
又Sn+1-Sn= - = >0,
∴数列{Sn}是单调递增的. ……………………………………………… 12 分
∴S1= 为Sn的最小值,故 < ,即t<9.
又∵t∈N*,
∴适合条件的t的最大值为8. ………………………………………… 14 分
整理得2a1d=d2.
∵a1=1,解得(d=0舍),d=2. ………………………………………… 4 分
∴an=2n-1(n∈N*). …………………………………………………… 6 分
(2)bn= = = ( - ),
∴Sn=b1+b2+…+bn= 〔(1- )+( - )+…+( - )〕
= (1- )= . …………………………………… 10 分
假设存在整数t满足Sn> 总成立.
又Sn+1-Sn= - = >0,
∴数列{Sn}是单调递增的. ……………………………………………… 12 分
∴S1= 为Sn的最小值,故 < ,即t<9.
又∵t∈N*,
∴适合条件的t的最大值为8. ………………………………………… 14 分
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1英语翻译
- 2一个三位数,百位数为a,十位数字是百位数字的2倍,个位数字比百位数字少1,则这三个数是
- 3椭圆x^2/a^2+y^2/b^2=1,e=-1+根号5/2,A是左顶点,F是右焦点,B是短轴的一个顶点,求角ABF
- 4方向为什么不与河岸平行
- 5a>b>c,求证:1/(a-b)+1/(b-c)>=4/(a-c),用柯西不等式
- 6削了皮的苹果在空气中为什么会变绿?
- 7一种商品,甲超市比乙商店进价便宜10%,甲超市按20%的利润定价,乙商店按15%的利润定价,结果甲超市的定价比乙商店的定价便宜0.14元.那么乙商店的进价是_元.
- 8谁能告诉我初二一元二次方程应用题解题方法?
- 9卫星为什么还受重力作用?
- 10自双曲线x^2/a^2- y^2/b^2=1(a>0,b>0)上的任意一点p 做横轴的平行线,交两渐近线于Q.R则I pQI-I PRI等于几