当前位置: > 求摆线x=a(t-sint),y=a(1-cost),0≤t≤2π.与x轴所围成图形绕y轴旋转所的旋转体的体积....
题目
求摆线x=a(t-sint),y=a(1-cost),0≤t≤2π.与x轴所围成图形绕y轴旋转所的旋转体的体积.

提问时间:2020-08-07

答案
首先取体积微元,在x=a(t-sint)处,x变化量为dx,形成的圆环面积为:dS=2πxdx,圆环所在柱面体积:dV=ydS=2πxydx又dx=d[a(t-sint)]=a(1-cost)dt将x,y参数方程代入得:dV=2π[a(t-sint)][a(1-cost)][a(...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.