当前位置: > 设x,y属于R,2x^2+3y^2=6x,求x^+y^2+2x的最大值和最小值...
题目
设x,y属于R,2x^2+3y^2=6x,求x^+y^2+2x的最大值和最小值
三角代换

提问时间:2020-08-07

答案
2x²-6x+3y²=0
2(x-3/2)²+3y²=9/2
(4/9)(x-3/2)²+(2/3)y²=1
令x=3/2 +3/2cosA
y=√(3/2) sinA
所以 S=x²+y²+2x=9/4 +(9/2)cosA+9cos²A/4+3sin²A/2+3+3cosA
=21/4 +(15/2)cosA+(9/4)cos²A+(3/2)(1-cos²A)
4S=21+30cosA+9cos²A+6-6cos²A
=3cos²A+30cosA+27
=3(cosA+5)²-48
当cosA=1,4S 有最大值60,x^2+y^2+2x有最大值 15
当cosA=-1,4S 有最小值0,x^2+y^2+2x有最小值 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.