当前位置: > 设△ABC的三条边为a,b,c,求证ab+bc+ca≤a2+b2+c2<2(ab+bc+ca)....
题目
设△ABC的三条边为a,b,c,求证ab+bc+ca≤a2+b2+c2<2(ab+bc+ca).

提问时间:2020-08-07

答案
证明:∵a2+b2≥2ab,b2+c2≥2bc,a2 +c2≥2ac,相加可得 2(a2+b2+c2)≥2ab+2bc+2ac,∴a2+b2+c2≥ab+bc+ca.又因为△ABC的三条边为a,b,c,∴a+b>c,b+c>a,a+c>b.∴a2 -ab-ac=a(a-b-c)<0,a2<ab+ac,同...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.