当前位置: > 底面为菱形的四棱锥P—ABCD,∠ABC=60 ,PA=AC=a,PB=PD=(√2)a,E为PD中点...
题目
底面为菱形的四棱锥P—ABCD,∠ABC=60 ,PA=AC=a,PB=PD=(√2)a,E为PD中点
证1)PA⊥ABCD
2)PB‖面EAC

提问时间:2020-08-07

答案
(1)因为ABCD是菱形 ∠ABC=60
所以∠BAD=120 ∠BAC=60
所以ABC是正三角形
所以AB=AC=a
所以AB^2+AP^2=a^2+a^2=2a^2=[(√2)a]^2=PB^2
所以PA⊥AB 同理PA⊥AD
因为AB交AD=A AB、AD属于面ABCD
所以PA⊥面ABCD
(2)连结BD 令AC交BD=F 连结EF
因为ABCD是菱形
所以BD、AC互相平分
所以F是BD的中点
又因为E是DP的中点
所以EF是三角形ADP的中位线
所以PB‖EF
因为EF属于面ACE
所以PB‖面ACE
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.