当前位置: > 设A为m*n矩阵,P是m阶可逆矩阵,Q是n阶可逆矩阵,证明:r(A)=r(PA)=r(AQ)=r(PAQ)...
题目
设A为m*n矩阵,P是m阶可逆矩阵,Q是n阶可逆矩阵,证明:r(A)=r(PA)=r(AQ)=r(PAQ)

提问时间:2020-08-07

答案
教科书中应该有这样的两个结论:1.初等变换不改变矩阵的秩2.可逆矩阵可以表示成初等矩阵的乘积由P,Q可逆,所以它们可以表示成初等矩阵的乘积所以 PA 相当于对A做若干初等行变换,它的秩不变,即仍是A的秩同样 AQ 相当于...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.