当前位置: > a^2+b^2+c^2=50=3a+4b+5c a>0 b>0 c>0 是否只有唯一的解...
题目
a^2+b^2+c^2=50=3a+4b+5c a>0 b>0 c>0 是否只有唯一的解

提问时间:2020-08-07

答案
方程组在实数范围内有唯一解.
a²+b²+c² = 3a+4b+5c,50 = 3a+4b+5c.
两式相加得a²+b²+c²+50 = 2(3a+4b+5c).
整理为a²-6a+9+b²-8b+16+b²-10c+25 = 0
即(a-3)²+(b-4)²+(c-5)² = 0.
三个实数的平方和为0,只能都是0.
于是a = 3,b = 4,c = 5是实数范围内的唯一解(且易见满足a,b,c > 0的条件).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.