当前位置: > 如图,在平行四边形ABCD中,对角线AC与BD交于点O,E、F、G分别为AO、BO、CD中点,AC=2AD....
题目
如图,在平行四边形ABCD中,对角线AC与BD交于点O,E、F、G分别为AO、BO、CD中点,AC=2AD.
(1)求证CF⊥BD.
(2)证明△EFG是等腰三角形

提问时间:2020-08-07

答案
⒈ 在平行四边形ABCD中,
∴AD‖BC且相等
又∵AC=2AD,且O为AC的中点
∴CO=AD=BC
∴三角形BCO为等腰三角形
又∵F为BO中点
∴CF⊥BO(三线合一)
∴CF⊥BD
2 EO=GO
∴△EOG为等腰三角形
∴BD垂直平分EG
∴EF=GF
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.