当前位置: > 设a,b是自然数,且满足关系式(11111+a)(11111-b)=123456789. 求证:a-b是4的倍数....
题目
设a,b是自然数,且满足关系式(11111+a)(11111-b)=123456789.
求证:a-b是4的倍数.

提问时间:2020-08-07

答案
证明:由已知条件可得11111+a与11111-b均为奇数,
所以a,b均为偶数.
又由已知条件11111(a-b)=ab+2468,①
ab是4的倍数,2468=4×617也是4的倍数,
所以11111×(a-b)是4的倍数,
故a-b是4的倍数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.