题目
数列{an}满足an=1 + an = 4n - 3, 当a1=2时 求前n项和Sn
数列{an}满足a(n+1) + an = 4n - 3, 当a1=2时 求前n项和Sn
数列{an}满足a(n+1) + an = 4n - 3, 当a1=2时 求前n项和Sn
提问时间:2020-08-07
答案
a(n+1)+an=4n-3
a(n+2)+a(n+1)=4(n+1)-3=4n+1
两式相减 a(n+2)-an=4
由此可以得到:
an的奇数项是a1=2为首相,公差d=4的等差数列;
an的偶数项是a2=-1为首相,公差d=4的等差数列.
当n为偶数时:
奇数项有 n/2个,S奇数=[2a1+(n/2-1)*d]*n/4=n²/2
奇数项有 n/2个,S偶数=[2a2+(n/2-1)*d]*n/4=n(n-3)/2
Sn=S奇数+S偶数=n²/2+n(n-3)/2=n(2n-3)/2
当n为奇数时:
奇数项有 (n+1)/2个,S奇数=[2a1+((n+1)/2-1)*d]*(n+1)/4=(n+1)²/2
偶数项有 (n-1)/2个,S偶数=[2a2+((n-1)/2-1)*d]*(n-1)/4=(n-4)(n-1)/2
Sn=S奇数+S偶数=(n+1)²/2+(n-4)(n-1)/2=(2n²-3n+5)/2
a(n+2)+a(n+1)=4(n+1)-3=4n+1
两式相减 a(n+2)-an=4
由此可以得到:
an的奇数项是a1=2为首相,公差d=4的等差数列;
an的偶数项是a2=-1为首相,公差d=4的等差数列.
当n为偶数时:
奇数项有 n/2个,S奇数=[2a1+(n/2-1)*d]*n/4=n²/2
奇数项有 n/2个,S偶数=[2a2+(n/2-1)*d]*n/4=n(n-3)/2
Sn=S奇数+S偶数=n²/2+n(n-3)/2=n(2n-3)/2
当n为奇数时:
奇数项有 (n+1)/2个,S奇数=[2a1+((n+1)/2-1)*d]*(n+1)/4=(n+1)²/2
偶数项有 (n-1)/2个,S偶数=[2a2+((n-1)/2-1)*d]*(n-1)/4=(n-4)(n-1)/2
Sn=S奇数+S偶数=(n+1)²/2+(n-4)(n-1)/2=(2n²-3n+5)/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 11mol任何粒子或物质的质量一个为单位时,.(高一化学)这之中的“物质的质量以克为单位”,怎么理解?
- 2翻译:我们只有努力工作,下次才会成功
- 3with the () of science,the () countries like China get rich(develop)
- 4I live three kilometers ______ our school.
- 5雾是小水珠,但为什么是白色的?
- 6有900个零件,其中有1个是次品(质量轻),用天平称至少称多少次一定能找出这个次品?
- 71W的碳膜电阻,阻值为200W,允许通过的最大电流为 多少mA?
- 8英语手抄报的英文怎么写
- 9作文抹不去的记忆
- 10白居易的故乡是不是江南?
热门考点