当前位置: > 三角形ABC中,BC=2,SINA=3分之2倍根号2,则AB向量与AC向量积的最大值是多少...
题目
三角形ABC中,BC=2,SINA=3分之2倍根号2,则AB向量与AC向量积的最大值是多少

提问时间:2020-08-07

答案
AB向量与AC向量积=AB长度*AC长度*cosA=cb*cosA
(1)A是锐角,cosA=1/3,AB向量与AC向量积=cb*(1/3)----------1式
由余弦定理,a^2=4=b^2+c^2-2bc*cosA》2bc-(2/3)bc=(4/3)bc,所以bc《3------2式
取等号条件,b=c=根号3
将2式带入1式,AB向量与AC向量积=cb*(1/3)《1;
(2)如果A是钝角,cosA=-1/3,AB向量与AC向量积=cb*cosA=-(1/3)bc
由于a^2=4=b^2+c^2-2bc*cosA》2bc+(2/3)bc=(8/3)bc,即bc《3/2,取等号条件:b=c=(根号6)/2;AB向量与AC向量积=cb*(-1/3)》(-1/3)bc》-1/2,bc最大值趋于0,因此此时无最大值.
综上所述,A为钝角时,无最大值;
A为锐角时,最大值=1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.