当前位置: > 等差数列 求和公式...
题目
等差数列 求和公式
1. 已知{an} 是等差数列,且 a1=2,a1+a2+a3=12,(1)求数列{an}的通项公式;
(2)令bn=an3n(注:3n为3的n次方) ,求{bn}的前项的和.

提问时间:2020-08-07

答案
1)
a1+a3=2*a2
所以 a1+a2+a3=3*a2=12
所以 a2=4
d = a2 - a1 = 2
所以 an=a1+(n-1)d=2n
2)
bn=2n*3^n (3^n 表示3的n次方)
Sn = 2*3 + 4*9 + …… + 2n*3^n 【1】
3Sn= ____2*9 + …… + 2(n-1)*3^n + 2n*3^(n+1)【2】
【1】式-【2】式,得
-2Sn
= 2(3+9+……+3^n)-2n*3^(n+1)
= 2*[3*(3^n-1)/2]-2n*3^(n+1) 【3】
【3】式除以-2,得
Sn = n*3^(n+1) - 3*(3^n-1)/2
于是已经得到,{bn}的前项的和Sn = n*3^(n+1) - 3*(3^n-1)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.