当前位置: > a为何(范围)值时,方程x^2-2|x|=a(a为实数)有且仅有两个不同的实数根?方程无实数根?有四个实数根?有三个实数根?...
题目
a为何(范围)值时,方程x^2-2|x|=a(a为实数)有且仅有两个不同的实数根?方程无实数根?有四个实数根?有三个实数根?

提问时间:2020-08-05

答案
分x大于0与x小于0画图
即 x^2-2x 与x^2+2x 画图 (图形象W型)
所以
有且仅有两个不同的实数根:x=-1或x大于0
方程无实数根 x小于-1
有四个实数根 x属于(-1,0)
有三个实数根 x等于0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.