当前位置: > 已知a大于b大于0,偶函数y=f(x)在区间[-b,-a]上是增函数,判断y=f(x)在区间[a,b]上的单调性,并加以证明...
题目
已知a大于b大于0,偶函数y=f(x)在区间[-b,-a]上是增函数,判断y=f(x)在区间[a,b]上的单调性,并加以证明

提问时间:2020-08-05

答案
证明
设-b<x1<x2<-a
y=f(x)在区间[-b,-a]上是增函数
∴f(x1)<f(x2)
偶函数
f(-x1)=f(x1)<f(x2)=f(-x2)
∵-b<x1<x2<-a
∴b>-x1>-x2>a
因此y=f(x)在区间[a,b]上单调减
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.