题目
已知向量a=(2cos(x/2),tan(x/2+π/4)),b=(根号2sin(x/2+π/4),tan(x/2-π/4)),令f(x)=a×b,是否存在实数x∈[0,π]使f(x)+f’(x)=0,其中f’(x)是f(x)的导函数?若存在,则求出x的值,若不存在,则证明之
提问时间:2020-08-04
答案
f(x)=a●b= 2cos(x/2)* √2*sin(x/2+π/4)+ tan(x/2+π/4)* tan(x/2-π/4)
=2√2 sin(x/2+π/4)* cos(x/2)+ tan(x/2+π/4)* tan(x/2-π/4)
=√2(sin(x+π/4)+sin(π/4))+[cos(π/2)-cos(x+π/2)]/[ cos(x+π/2)+ cos(π/2)]
=√2*(sin(x)*cos(π/4)+cos(x)*sin(π/4)+ 1/2*√2)+[-cos(x+π/2)]/[ cos(x+π/2)]
=√2*(sin(x)* 1/2*√2+cos(x)* 1/2*√2+ 1/2*√2)-1
= sin(x)+ cos(x)
f ’(x)=cos(x)-sin(x)
则f(x)+f’(x)=2*cos(x)=0,x=π/2
即存在实数x∈[0,π]使f(x)+f’(x)=0,且x=π/2
=2√2 sin(x/2+π/4)* cos(x/2)+ tan(x/2+π/4)* tan(x/2-π/4)
=√2(sin(x+π/4)+sin(π/4))+[cos(π/2)-cos(x+π/2)]/[ cos(x+π/2)+ cos(π/2)]
=√2*(sin(x)*cos(π/4)+cos(x)*sin(π/4)+ 1/2*√2)+[-cos(x+π/2)]/[ cos(x+π/2)]
=√2*(sin(x)* 1/2*√2+cos(x)* 1/2*√2+ 1/2*√2)-1
= sin(x)+ cos(x)
f ’(x)=cos(x)-sin(x)
则f(x)+f’(x)=2*cos(x)=0,x=π/2
即存在实数x∈[0,π]使f(x)+f’(x)=0,且x=π/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1如何确定革兰氏染色法结果的正确性
- 2商店出售的鞋子规格大小有两种表示方法:“厘米“和“码”.已知19厘米相当于28吗,13.5厘米相当于17码,那么22.5厘米相当于( )码,( )厘米相当于36码
- 3little的同义词和同音词是什么
- 4桃花、苹果花、油菜花、都是靠什么传粉的.它们不仅靠颜色和气味吸引昆虫,在子房的基部有什么,
- 5一尺一(打一字)
- 6解关于x的方程 第一道(x-s)²=(x-t)²
- 7一个直角梯形的零件ABCD中,AD‖BC,腰长DC=10cm,∠D=120度,则该零件的另一腰长AB=
- 8证明:存在无穷多对正整数(m,n),满足方程m2+25n2=10mn+7(m+n).
- 9一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,求这个三位数.
- 10早晚冷,中午热的主要原因是( ) A.早晨、晚上离太阳远一些 B.中午太阳高度角较大 C.早晨、晚上太阳高度角大 D.早晨、晚上离太阳近一些