当前位置: > 已知a,b,c∈R+,求证:(a+b+c)(a3+b3+c3)≥(a2+b2+c2)2...
题目
已知a,b,c∈R+,求证:(a+b+c)(a3+b3+c3)≥(a2+b2+c2)2

提问时间:2020-08-04

答案
解1:柯西不等式如果能看出来,直接a=(√a)^2,a^3=(a√a)^2直接柯西得到上式如果看不出来,可以设a=x^2,则a^3=x^6,同理b=y^2,c=z^2(a+b+c)(a^3+b^3+c^3)=(x^2+y^2+z^2)(x^6+y^6+z^6)>=(x^4+y^4+z^4)^2=(a^2+b^2+c^2)^2...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.