当前位置: > 设P为双曲线x^2-y^2/12=1上的一点,F1,F2是该双曲线的两个焦点,若PF1:PF2=3:2,则△PF1F2的面积为多少...
题目
设P为双曲线x^2-y^2/12=1上的一点,F1,F2是该双曲线的两个焦点,若PF1:PF2=3:2,则△PF1F2的面积为多少

提问时间:2020-08-04

答案
由双曲线方程x^2-y^2/12=1,得:c^2=a^2+b^2=1+12=13, ∴|F1F2|=2√13.∵|PF1|∶|PF2|=3∶2,∴|PF1|=(3/2)|PF2|.由双曲线定义,有:||PF1|-|PF2||=2a=2,∴|(3/2)|PF2|-|PF2|...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.