当前位置: > 已知关于x的方程x2-2(m-2)x+m2=0.问是否存在实数m,使方程的两个实数根的平方和等于56,若存在,求出m的值;若不存在,请说明理由....
题目
已知关于x的方程x2-2(m-2)x+m2=0.问是否存在实数m,使方程的两个实数根的平方和等于56,若存在,求出m的值;若不存在,请说明理由.

提问时间:2020-08-04

答案
设方程的两个实数根为x1、x2
则x1+x2=2(m-2),x1×x2=m2
令x12+x22=56得:(x1+x22-2x1x2=4(m-2)2-2m2=56,
解这个方程得,m=10或m=-2,
当m=10时,△<0,所以不合题意,应舍去,
当m=-2时,△>0,
所以存在实数m=-2,使得方程的两个实数根的平方和等于56.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.