当前位置: > 已知关于x的方程x²-﹙m-2﹚x+m²=0,是否存在正实数m,使方程的两个实数根的平方和等于56?...
题目
已知关于x的方程x²-﹙m-2﹚x+m²=0,是否存在正实数m,使方程的两个实数根的平方和等于56?
若存在,求出m的值,若不存在,请说明理由.

提问时间:2020-08-04

答案
设两根分别为a、b∵a²+b²=56、ab=m²、a+b=m-2∴(a+b)²=(m-2)² a²+2ab+b²=m²-4m+4 56+2m²=m²-4m+4 m²+4m+52=0 m²+4m+4=-48 ...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.