当前位置: > cos2x/(1+sin2x)=1/5 求tanx...
题目
cos2x/(1+sin2x)=1/5 求tanx
我算出两解 :2/3 和 -3/2
可答案只有2/3,另一解为何舍去啊?

提问时间:2020-08-04

答案
*代表乘号,/代表除以
首先有一个公式 cosx*cosx=1/[tanx*tanx+1]
cos 2x = 2*cosx*cosx - 1 = 2/[tan x *tan x + 1 ] -1 【A】
sin 2x = 2*sinx*cosx = 2*cosx*cosx*tanx=2*tanx/[tanx*tanx+1]
带入原式得3*tanx*tanx+tanx-2=0 即tanx=2/3 或 -1
tanx=-1时带入【A】式得cos2x=0 很显然与原方程不符合,舍去.
故tanx=2/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.