题目
已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC.
(1)BC与⊙O是否相切?请说明理由;
(2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.
(1)BC与⊙O是否相切?请说明理由;
(2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.
提问时间:2020-08-04
答案
(1)BC与⊙O相切;
理由:连接OD,BD;
∵DE切⊙O于D,AB为直径,
∴∠EDO=∠ADB=90°,
∵DE平分CB,
∴DE=
BC=BE,
∴∠EDB=∠EBD;
∵∠ODB=∠OBD,∠ODB+∠EDB=90°,
∴∠OBD+∠DBE=90°,
即∠ABC=90°,
∴BC与⊙O相切;
(2)当△ABC为等腰直角三角形(∠ABC=90°)时,四边形OBED是平行四边形;
∵△ABC是等腰直角三角形(∠ABC=90°),
∴AB=BC,
∵BD⊥AC于D,
∴D为AC中点,
∴OD=
BC=BE,OD∥BC,
∴四边形OBED是平行四边形.
理由:连接OD,BD;
∵DE切⊙O于D,AB为直径,
∴∠EDO=∠ADB=90°,
∵DE平分CB,
∴DE=
1 |
2 |
∴∠EDB=∠EBD;
∵∠ODB=∠OBD,∠ODB+∠EDB=90°,
∴∠OBD+∠DBE=90°,
即∠ABC=90°,
∴BC与⊙O相切;
(2)当△ABC为等腰直角三角形(∠ABC=90°)时,四边形OBED是平行四边形;
∵△ABC是等腰直角三角形(∠ABC=90°),
∴AB=BC,
∵BD⊥AC于D,
∴D为AC中点,
∴OD=
1 |
2 |
∴四边形OBED是平行四边形.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1You are no ____(long) a child.
- 2(意味深长,值得细细体会)是哪个成语的意思
- 3It is a good way to learn English by .new words.the dictionary.
- 4小文第一次月考五科分数语文-3,英语+8,数学+2生物-15,科学? 怎么看平均分
- 5(2014•崇安区二模)一组数据3,5,7,m,n的平均数是6,则m,n的平均数是( ) A.6 B.7 C.7.5 D.15
- 6雷锋日记续写 身边的现代雷锋事迹150字左右
- 7怎样理解无符号变量,来表示产品数量?
- 8那些动物睡觉很有趣?
- 9最快的船——( )填诗句
- 10Please see attached the payment
热门考点