题目
切线的判定;圆周角定理;扇形面积的计算.专题:计算题;证明题.分析:(1)要证FD是⊙O的切线只要证明∠OCF=90°即可;
(2)根据已知证得△OEG∽△CBG根据相似比不难求得OC的长;
(3)根据S阴影=S△OCD-S扇形OBC从而求得阴影的面积.
(2)根据已知证得△OEG∽△CBG根据相似比不难求得OC的长;
(3)根据S阴影=S△OCD-S扇形OBC从而求得阴影的面积.
提问时间:2020-08-04
答案
证明:(1)连接OC(如图①),
∵OA=OC,
∴∠1=∠A.
∵OE⊥AC,
∴∠A+∠AOE=90°.
∴∠1+∠AOE=90°.
∵∠FCA=∠AOE,
∴∠1+∠FCA=90°.
即∠OCF=90°.
∴FD是⊙O的切线.
(2)连接BC,(如图②)
∵OE⊥AC,
∴AE=EC(垂径定理).
又AO=OB,
∴OE∥BC且 OE=1/2BC.
∴∠OEG=∠GBC(两直线平行,内错角相等),
∠EOG=∠GCB(两直线平行,内错角相等),
∴△OEG∽△CBG(AA).
∴ OG/CG=OE/CB=1/2.
∵OG=2,
∴CG=4.
∴OC=OG+GC=2+4=6.
即⊙O半径是6.
(3)∵OE=3,由(2)知BC=2OE=6,
∵OB=OC=6,
∴△OBC是等边三角形.
∴∠COB=60°.
∵在Rt△OCD中,CD=OC•tan60°=6 根号3,
∴S阴影=S△OCD-S扇形OBC= 1/2×6×6根号3-(60π×6的平方)/360= 18根号3-6π.
∵OA=OC,
∴∠1=∠A.
∵OE⊥AC,
∴∠A+∠AOE=90°.
∴∠1+∠AOE=90°.
∵∠FCA=∠AOE,
∴∠1+∠FCA=90°.
即∠OCF=90°.
∴FD是⊙O的切线.
(2)连接BC,(如图②)
∵OE⊥AC,
∴AE=EC(垂径定理).
又AO=OB,
∴OE∥BC且 OE=1/2BC.
∴∠OEG=∠GBC(两直线平行,内错角相等),
∠EOG=∠GCB(两直线平行,内错角相等),
∴△OEG∽△CBG(AA).
∴ OG/CG=OE/CB=1/2.
∵OG=2,
∴CG=4.
∴OC=OG+GC=2+4=6.
即⊙O半径是6.
(3)∵OE=3,由(2)知BC=2OE=6,
∵OB=OC=6,
∴△OBC是等边三角形.
∴∠COB=60°.
∵在Rt△OCD中,CD=OC•tan60°=6 根号3,
∴S阴影=S△OCD-S扇形OBC= 1/2×6×6根号3-(60π×6的平方)/360= 18根号3-6π.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1圆与直线2X+3Y-10=O相切与点P(2,2)并且过过点M(-3,1),求圆的方程
- 2“水滴石穿”是物理作用还是化学作用?
- 3现有一瓶饱和的硝酸钾溶液,试举出两种使它变成不饱和溶液的方法.
- 4——What were you doing at( )last night?——I was watching a football match on TV.
- 5小学毕业了,送给语文、数学、英语老师的话的话.(各20句)
- 6从微观角度分析铝与硫酸铜溶液反应的实质
- 7当a>0时,且a不等于1,解关于x的不等式a^[(2^x)+x)]<a[(x^2)+3x+3]
- 8一个长方体的长是712厘米,高是3厘米,体积是90立方厘米,这个长方体的表面积是多少?
- 9安琪甜酒曲做的米酒没发酵,求教?
- 10我国西北地区气候干燥,影响地形变化的因素主要是( ).A.流水侵蚀 B.风力侵蚀 C.流水沉积 D.冰川侵