题目
已知函数f(x)=2√3sinxcosx+2cos²x-1
(1)求函数f(x)的对称轴及在闭区间(0,π/2)上的最值
(2)若f(x0)=6/5,x0∈闭区间(π/4,π/2)求cos2x0的值
(1)求函数f(x)的对称轴及在闭区间(0,π/2)上的最值
(2)若f(x0)=6/5,x0∈闭区间(π/4,π/2)求cos2x0的值
提问时间:2020-08-03
答案
f(x)=2√3sinxcosx+2cos²x-1
=√3sin2x+cos2x
=2(√3/2sin2x+1/2cos2x)
=2(sin2xcosπ/6+cos2xsinπ/6)
=2sin(2x+π/6)
(1)
对称轴:2x+π/6=2kπ+π/2
2x=2kπ+π/3
x=kπ+π/6;k∈Z
闭区间【0,π/2】
当x=π/2时;函数有最小值=-2sin(π/6)=-1
当x=π/6时,函数有最大值=2sin(π/2)=-2
(2)2sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5
sin2x0cosπ/6+cos2x0sinπ/6=3/5
√3sin2x0+cos2x0=6/5 (1)
x0∈[π/4,π/2]
2x0∈[π/2,π]
cos2x0≤0
2x0+π/6∈[2π/3,7π/6]
因为:sin(2x0+π/6)=3/5>0
所以:2x0+π/6∈[2π/3,π)
所以:cos(2x0+π/6)
=√3sin2x+cos2x
=2(√3/2sin2x+1/2cos2x)
=2(sin2xcosπ/6+cos2xsinπ/6)
=2sin(2x+π/6)
(1)
对称轴:2x+π/6=2kπ+π/2
2x=2kπ+π/3
x=kπ+π/6;k∈Z
闭区间【0,π/2】
当x=π/2时;函数有最小值=-2sin(π/6)=-1
当x=π/6时,函数有最大值=2sin(π/2)=-2
(2)2sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5
sin2x0cosπ/6+cos2x0sinπ/6=3/5
√3sin2x0+cos2x0=6/5 (1)
x0∈[π/4,π/2]
2x0∈[π/2,π]
cos2x0≤0
2x0+π/6∈[2π/3,7π/6]
因为:sin(2x0+π/6)=3/5>0
所以:2x0+π/6∈[2π/3,π)
所以:cos(2x0+π/6)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1甲、乙两堆围棋都是白子和黑子,甲堆中白子与黑子的比是2:1,乙堆中白子与黑子的比是4:7.如果从乙堆中拿3颗黑子放入甲堆,则甲堆中白子与黑子的比是7:4,如果把两堆棋子合在一起
- 2现代科学给人类带来的利与弊
- 3高锰酸钾和盐酸反应,锰的价态是怎么变得?还有2.3克金属钠与氯气充分反应,失去了多少电子,为什么?
- 4100分之0.4是等于几%?3Q
- 5一道小学方程解的应用题
- 6有四根木料,打算把每根锯成3段,每锯开一处,需要3分钟,全部锯完需要多少分钟?
- 7东方商场计划15天完成1200台电脑的销售任务,结果前7天完成了销售任务的1/2,问:
- 8I like sweet biscuits.改一般疑问句是什么?
- 9计算√21×√35
- 1012小时10分等于多少小时
热门考点