题目
如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.
提问时间:2020-08-03
答案
证明:在△ACD中,因为AD=AC 且 AE⊥CD,
所以根据等腰三角形中底边的垂线与底边的交点即中点,可以证明:
E为CD的中点,又因为F是CB的中点,
所以,EF∥BD,且EF为△BCD的中位线,
因此EF=
BD,即BD=2EF.
所以根据等腰三角形中底边的垂线与底边的交点即中点,可以证明:
E为CD的中点,又因为F是CB的中点,
所以,EF∥BD,且EF为△BCD的中位线,
因此EF=
1 |
2 |
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点