当前位置: > 证明偶函数的对称区间上的单调性相反...
题目
证明偶函数的对称区间上的单调性相反
阿- -、
介个,
我只有两个地方不太明白,急阿
设y=f(x)是偶函数,则f(-x)=f(x)
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
判断递减怎么判断?

提问时间:2020-08-03

答案
设y=f(x)是偶函数,则f(-x)=f(x)
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
答:“不妨设”的意思是无论设为单调递增还是单调递减都可以.
不妨设f(x)在X正半轴上单调递减,则f(x1)<f(x2),
所以f(-x1)<f(-x2),即f(x)在X负半轴递增
你可以将f(x)设为简单的函数如:x²,-x²这2个函数一个是在正半轴单调递增,一个递减.从图象上可以看出偶函数在x正半轴负半轴单调性相反.
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
这里少了一个负号f(-x1)>f(-x2),-x1、-x2在x负半轴即
-x1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.