题目
证明偶函数的对称区间上的单调性相反
阿- -、
介个,
我只有两个地方不太明白,急阿
设y=f(x)是偶函数,则f(-x)=f(x)
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
判断递减怎么判断?
阿- -、
介个,
我只有两个地方不太明白,急阿
设y=f(x)是偶函数,则f(-x)=f(x)
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
判断递减怎么判断?
提问时间:2020-08-03
答案
设y=f(x)是偶函数,则f(-x)=f(x)
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
答:“不妨设”的意思是无论设为单调递增还是单调递减都可以.
不妨设f(x)在X正半轴上单调递减,则f(x1)<f(x2),
所以f(-x1)<f(-x2),即f(x)在X负半轴递增
你可以将f(x)设为简单的函数如:x²,-x²这2个函数一个是在正半轴单调递增,一个递减.从图象上可以看出偶函数在x正半轴负半轴单调性相反.
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
这里少了一个负号f(-x1)>f(-x2),-x1、-x2在x负半轴即
-x1
若x1>x2>0,则-x1f(x2),即f(x)递减
同理可证f(x)在正半轴为减函数则负半轴为增函数
这里面 ,为什么要设正半轴单调递增?就是一个证明必须的格式么?
答:“不妨设”的意思是无论设为单调递增还是单调递减都可以.
不妨设f(x)在X正半轴上单调递减,则f(x1)<f(x2),
所以f(-x1)<f(-x2),即f(x)在X负半轴递增
你可以将f(x)设为简单的函数如:x²,-x²这2个函数一个是在正半轴单调递增,一个递减.从图象上可以看出偶函数在x正半轴负半轴单调性相反.
最后一步,为什么f(-x1)>f(x2),即f(x)递减?
这里少了一个负号f(-x1)>f(-x2),-x1、-x2在x负半轴即
-x1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1有一杯盐水,盐和水的比是1:10,再放5克盐,新盐水重60克.原来盐水中盐和水各多少千克?
- 2已知抛物线的顶点在原点,对称轴是x轴,焦点在直线3x-4y+12=0上,求抛物线的通径长
- 3解二元一次方程 3x+2y=3 2x-y=9
- 4别踩疼了雪
- 5Y我国垮流域调水工程有那些?
- 6行政组织在国家经济发展中发挥的重要作用体现在哪些方面
- 7一个水箱的底面为边长40cm的正方形,高为60cm,这个水箱能盛水多少g?(每立方厘米水重2克)
- 85x-5×0.8=9
- 9People can fly to the moon in 50 years.
- 10请教英语老师:Thank you very much/Thanks a lot 在下列情形该怎么用?
热门考点