当前位置: > 已知数列{an}的首项a1=3/5,a(n+1)=3an/2an+1,(n=N*) 求{an}的通项公式...
题目
已知数列{an}的首项a1=3/5,a(n+1)=3an/2an+1,(n=N*) 求{an}的通项公式

提问时间:2020-08-03

答案
a(n+1)=3an/(2an+1),
取倒数得:1/ a(n+1)=( 2an+1)/(3an)
即有1/ a(n+1)=2/3+1/(3an)
设1/an=bn,上式可化为b(n+1)= 2/3+1/3bn
则b(n+1)-1=1/3(bn-1)
所以数列{bn-1}是公比为1/3的等比数列,其首项为b1-1=1/a1-1=2/3.
bn-1=2/3•(1/3)^(n-1)
即1/an-1=2/3•(1/3)^(n-1)
化简得 an=3^n/(3^n+2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.